EMMA: An Efficient Massive Mapping Algorithm Using Improved Approximate Mapping Filtering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMMA: an efficient massive mapping algorithm using improved approximate mapping filtering.

Efficient massive mapping algorithm (EMMA), an algorithm on efficiently mapping massive cDNAs onto genomic sequences, has recently been developed. The process of mapping massive cDNAs onto genomic sequences has been improved using more approximate mapping filtering based on an enhanced suffix array coupled with a pruned fast hash table, algorithms of block alignment extensions, and k-longest pa...

متن کامل

FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges

Proceedings of IJCAI 2003 In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM which overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM problems and provide real-world experim...

متن کامل

An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations

Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. A new domain mapping algorithm is presented that extends recent work in which ideas from spectral graph theory have been applied to this problem. The generalization of spectral graph bisection involves a novel use of mul...

متن کامل

An Efficient Algorithm for Tree Mapping in XML Databases

In this article, we discuss an efficient algorithm for tree mapping problem in XML databases. Given a target tree T and a pattern tree Q, the algorithm can find all the embeddings of Q in T in O(|T||Q|) time while the existing approaches need exponential time in the worst case.

متن کامل

Robotic Mapping Using Measurement Likelihood Filtering

The classical occupancy grid formulation requires the use of a priori known measurement likelihoods whose values are typically either assumed, or learned from training data. Furthermore in previous approaches, the likelihoods used to propagate the occupancy map variables are in fact independent of the state of interest and are derived from the spatial uncertainty of the detected point. This all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Biochimica et Biophysica Sinica

سال: 2006

ISSN: 1672-9145,1745-7270

DOI: 10.1111/j.1745-7270.2006.00237.x